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Abstract. Using supersymmetric quantum mechanics we develop a new method for constructing
quasi-exactly solvable (QES) potentials with two known eigenstates. This method is extended for
constructing conditionally-exactly solvable potentials (CES). The considered QES potentials at
certain values of parameters become exactly solvable and can be treated as CES ones.

1. Introduction

Since the appearance of quantum mechanics there has been continual interest in models for
which the corresponding Schrödinger equation is exactly solvable. With regards to solvability
of the Schr̈odinger equation there are three interesting classes of the potentials.

The first class is the exactly solvable potentials allowing us to obtain in explicit form all
energy levels and corresponding wavefunctions. The hydrogen atom and harmonic oscillator
are the best known examples of this type.

The second class is the so-called quasi-exactly solvable (QES) potentials for which a
finite number of eigenstates of the corresponding Hamiltonian can be found exactly in explicit
form. The first examples of QES potentials were given in [1–4]. Subsequently, several
methods for generating QES potentials were worked out and as a result many QES potentials
were found [5–13] (see also the review book [14]). Three different methods that are based
respectively on the polynomial ansatz for wavefunctions, the point canonical transformation,
and the supersymmetric (SUSY) quantum mechanics are described in [12]. Recently, an
anti-isospectral transformation called a duality transformation was introduced in [15]. This
transformation relates the energy levels and wavefunctions of two QES potentials. In [16] a
new QES potential was discovered using this anti-isospectral transformation.

The third class is the conditionally-exactly solvable (CES) potentials for which the
eigenvalues problem for the corresponding Hamiltonian is exactly solvable only when the
parameters of the potential obey certain conditions. Such a class of potentials was first
considered in [17]. It is interesting to note that in [18] it was demonstrated that the equivalence
of the condition required for the potential obtained in [17] to be a CES potential with the
condition that this potential can be put in an explicitly supersymmetric form. Recently, new
examples of CES potentials have been discovered [19–21].

A very useful algebraic tool for the investigation of the problem of exact solvability of
the Schr̈odinger equation is the SUSY quantum mechanics (for a review of SUSY quantum
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mechanics see [22, 23]). For constructing QES potentials the SUSY method was used in
[10–12]. The starting point of this method is some initial QES potential withn + 1 known
eigenstates. Then applying the technique of SUSY quantum mechanics one can calculate the
supersymmetric partner of the QES potential which is a new QES potential withn known
eigenstates. In [20, 21] the SUSY quantum mechanics was used to develop some generalized
method for constructing the CES potentials.

In our previous paper [24] we have proposed a new SUSY method for constructing
QES potentials with two known eigenstates which, in contrast to [10–12], does not require
knowledge of the initial QES potentials for generation of new QES ones. In [25] we extended
this method for constructing QES potentials with three known eigenstates.

This paper is devoted to the further development of the SUSY method proposed in [24]
and to extend this method for the construction of CES potentials. We obtain new QES and
CES potentials. An interesting new point is that QES potentials with two known eigenstates
become exactly solvable at certain fixed values of parameter and can, therefore, be treated as
CES potentials.

2. Supersymmetric quantum mechanics

In Witten’s model of supersymmetric quantum mechanics the SUSY partner HamiltoniansH±
read

H± = B∓B± = −1

2

d2

dx2
+ V±(x) (1)

where

B± = 1√
2

(
∓ d

dx
+W(x)

)
(2)

V±(x) = 1
2(W

2(x)±W ′(x)) W ′(x) = dW(x)

dx
(3)

W(x) is referred to as a superpotential. In this paper we shall consider the systems on the full
real line−∞ < x <∞.

The eigenvaluesE±n and eigenfunctionsψ±n (x) of the HamiltoniansH± are related by
SUSY transformations which in the case of unbroken SUSY read

E−n+1 = E+
n E−0 = 0 (4)

ψ−n+1(x) =
1√
E+
n

B+ψ+
n (x) ψ+

n (x) =
1√
E−n+1

B−ψ−n+1(x). (5)

As a consequence of SUSY the HamiltoniansH+ andH− have the same energy spectrum
except for the zero-energy ground state. The latter exists in the case of the unbroken SUSY.
Only one of the HamiltoniansH± has a square integrable eigenfunction corresponding to the
zero-energy. Here we use the convention that the zero energy eigenstate belongs toH−. Due to
the factorization of the HamiltoniansH± (see (1)) the ground state forH− satisfies the equation
B−ψ−0 (x) = 0, the solution of which is

ψ−0 (x) = C−0 exp

(
−
∫
W(x) dx

)
. (6)

C−0 is the normalization constant. Here and below,C denotes the normalization constant of the
corresponding wavefunction. From the condition of square integrability of the wavefunction
ψ−0 (x) it follows that the superpotential must satisfy the condition

sign(W(±∞)) = ±1 (7)
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which is the condition of the existence of unbroken SUSY. For a detailed description of SUSY
quantum mechanics and its application for the exact calculation of eigenstates of Hamiltonians
see, [22, 23]. The properties of the unbroken SUSY quantum mechanics which are reflected in
SUSY transformations (4) and (5) can be used for an exact calculation of the energy spectrum
and wavefunctions. In this paper we use these properties for the generation of the QES
potentials with two known eigenstates and CES potentials.

3. QES potentials with two known eigenstates

We shall solve the eigenvalue problem for the HamiltonianH−. The ground state of this
Hamiltonian is known and is given by wavefunction (6) with energyE−0 = 0. In order to
calculate the excited state ofH− we use the following well known procedure used in SUSY
quantum mechanics. Let us consider the SUSY partner ofH−, i.e. the HamiltonianH+. If we
calculate the ground state ofH+ we immediately find the first excited state ofH− using the
SUSY transformations (4), (5). In order to calculate the ground state ofH+ let us rewrite it in
the following form:

H+ = H(1)
− + ε = B+

1B
−
1 + ε ε > 0 (8)

which leads to the following relation between the potential energies:

V+(x) = V (1)− (x) + ε (9)

and superpotentials

W 2(x) +W ′(x) = W 2
1 (x)−W ′1(x) + 2ε (10)

whereε is the energy of the ground state ofH+ since we supposed thatH(1)
− similarly toH− has

zero-energy ground state,B±1 andV (1)− (x) are given by (2) and (3) with the new superpotential
W1(x).

As we see from (8) the ground state wavefunction ofH+ is also the ground state
wavefunction ofH(1)

− and it satisfies the equationB−1 ψ
+
0 (x) = 0. The solution of this equation

is

ψ+
0 (x) = C+

0 exp

(
−
∫
W1(x) dx

)
(11)

where for the square integrability of this function the superpotentialW1(x) must satisfy the
same condition asW(x) (7). Using (4) and (5) we obtain the energy levelE−1 = ε and the
wavefunction of the first excited stateψ−1 (x) for H−.

Repeating this procedure in the case of shape invariant potentials [26] and self-similar
potentials [27, 28] it is possible to calculate all of the energy spectrum and the corresponding
wavefunctions. As a result of these cases many exactly solvable potentials were obtained [29]
(see also [22]).

We consider a more general case and do not restrict ourselves to the shape invariant
potentials or self-similar potentials. In this case it is not possible to obtain all of the energy
spectrum. In [24] we obtained the general solution of equation (10) and thus derived a general
expression for the QES potential with two explicitly known eigenstates. The basic idea consists
of finding such a pair ofW(x) andW1(x) that satisfies equation (10). To do this we rewrite
equation (10) in the following form

W ′+(x) = W−(x)W+(x) + 2ε (12)

where
W+(x) = W1(x) +W(x)

W−(x) = W1(x)−W(x).
(13)
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This new equation (12) can be easily solved with respect toW−(x) for a given arbitrary function
W+(x) or with respect toW+(x) for a given arbitrary functionW−(x). Then from (13) we obtain
superpotentialsW(x) andW1(x) which satisfy equation (10).

In contrast to our paper [24] where we use the solution with respect toW−(x), in this
paper we use the solution with respect toW+(x). This solution is more convenient for the
construction of CES potentials and can be written in the following form

W+(x) = exp

(∫
dx W−(x)

)[
2ε
∫

dx exp

(
−
∫

dx W−(x)
)

+ λ

]
(14)

hereλ is the constant of integration. In order to simplify solution (14) let us chooseW−(x) to
be of the form

W−(x) = −φ′′(x)/φ′(x). (15)

To provide a nonsingularity ofW−(x) and as a result a nonsingularity ofV±(x) we shall
consider a nonsingular monotonic functionφ(x) satisfying the conditionφ′(x) > 0. Then,
substituting (15) into (14), we obtain

W+(x) = (2εφ(x) + λ)/φ′(x). (16)

Note that the constantλ can be included into the functionφ(x) and thus forW+(x) we obtain

W+(x) = 2εφ(x)/φ′(x). (17)

Finally, for superpotentialsW(x) andW1(x) we have

W(x) = (εφ(x) + 1
2φ
′′(x))/φ′(x) (18)

W1(x) = (εφ(x)− 1
2φ
′′(x))/φ′(x). (19)

Using this result for the wavefunctions of the ground state with the energyE−0 = 0 and excited
state withE−1 = ε we obtain

ψ−0 (x) = C−0 (φ′(x))−1/2 exp

(
− ε

∫
dx φ(x)/φ′(x)

)
E−0 = 0 (20)

ψ−1 (x) = C−1 φ(x)(φ′(x))−1/2 exp

(
− ε

∫
dx φ(x)/φ′(x)

)
E−1 = ε. (21)

Note that as we see from (13)W+(x) must satisfy the same condition (7) asW(x) and
W1(x) do. Then, becauseφ(x) is a monotonic function andφ′(x) > 0 from (17), it follows that
φ(x) has one node. Therefore,ψ−1 (x) given by (21) also has one node and thus corresponds
to the first excited state. The functionsφ(x) that satisfy the described condition also provide
the square integrability of the wavefunctions (20) and (21).

It is worth stressing thatφ(x) = ψ−1 (x)/ψ−0 (x) from which follows an interesting fact.
Namely, the ratioφ(x) of the wavefunctions of the first excited state and ground state and the
distanceε between the corresponding energy levels entirely determine the potential energy.

The QES potentialV−(x) is given by (3) with superpotential (18). Choosing different
φ(x) andε we obtain different QES potentials with two explicitly known eigenstates.

Now let us consider some interesting examples of new QES potentials which become
exactly solvable at certain fixed values of parameterε and can thus be treated as CES ones.

3.1. Example 1

Let us put

φ(x) = βH2k+1(ix) (22)
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whereHm(x) is a Hermite polynomial. The final result does not depend on the constantβ.
The superpotentials in this case read

W(x) = γ x + i2k(γ + 1)
H2k−1(ix)

H2k(ix)
(23)

W1(x) = γ x + i2k(γ − 1)
H2k−1(ix)

H2k(ix)
(24)

where we have introduced the notation

γ = ε

2k + 1
. (25)

Substituting the superpotentialW(x) (23) into (3) we obtain the following QES potential
V−(x):

V−(x) = 1

2
γ 2x2 + 2k(2k − 1)(γ + 1)2

H2k−2(ix)

H2k(ix)

−2k2(γ + 1)(γ + 3)

(
H2k−1(ix)

H2k(ix)

)2

+ kγ (γ + 1)− 1

2
γ. (26)

The wavefunctions of the ground and first excited states read

ψ−0 (x) = C−0 (H2k(ix))
−(1+γ )/2 exp(−γ x2/2) (27)

ψ−1 (x) = C−1 H2k+1(ix)(H2k(ix))
−(1+γ )/2 exp(−γ x2/2). (28)

It is interesting to note that in the special caseγ = 1, i.e.

ε = 2k + 1 (29)

the second term inW1(x) falls out andW1(x) corresponds to the superpotential of a linear
harmonic oscillator. ThenV (1)− (x) and, as a result of (9),V+(x) are the potential energies of
the linear harmonic oscillator. Therefore, in this case, the SUSY partnerH+ is the Hamiltonian
of the linear harmonic oscillator and we know all its eigenfunctions in explicit form. Using
SUSY transformations (4), (5) we can easily calculate the energy levels and the wavefunctions
of all the excited states ofH−. The energy spectrum ofH− in this special case is the following:

E−0 = 0 E−n = n + 2k n = 1, 2, . . . . (30)

Thus the QES potential (26) at a fixed value ofε (29) becomes exactly solvable and
can therefore be treated as the CES potential. Note thatV−(x) in this special caseγ = 1
corresponds to the potential obtained by Bagrov and Samsonov [30, 31] via the Darboux
method and later by Junker and Roy [20, 21] within the SUSY approach.

3.2. Example 2

Consider the function

φ(x) = βH2k+1(ix)

H2m(ix)
k > m (31)

which generalizes the one given in the first example. For superpotentials we obtain

W(x) = −x − i4m
H2m−1(ix)

H2m(ix)
− i

ε + 2k − 2m + 1

H2m+1(ix)/H2m(ix)−H2k+2(ix)/H2k+1(ix)
(32)

W1(x) = x + i4m
H2m−1(ix)

H2m(ix)
− i

ε − (2k − 2m + 1)

H2m+1(ix)/H2m(ix)−H2k+1(ix)/H2k(ix)
. (33)
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The QES potentialV−(x) is given by (3) with superpotential (32). The expressions for the
QES potential and the wavefunctions in this case are somewhat complicated and we do not
write them down in explicit form.

We would like to stress the following very interesting point. In the special case

ε = 2k − 2m + 1 (34)

the second term in superpotentialW1(x) (33) drops up and then thisW1(x) coincides with
superpotentialW(x) (23) from the first example forγ = 1 which is exactly solvable. Then,
using the same explanation as in the end of the first example, we may conclude that for the
potentialV−(x) calculated with superpotential (32) in the special case (34) it is possible to
obtain all energy levels and corresponding wavefunctions and thusV−(x) can be treated as the
CES potential. For the energy levels we obtain

E−0 = 0 E−1 = 2k − 2m + 1

E−n = n + 2k n = 2, 3, 4, . . . .
(35)

In this special case the potential energyV−(x) coincides with the one studied in [30, 31].

4. CES potentials

In this section we develop a consistent method for constructing the CES potentials using the
results of the previous section.

Suppose thatW1(x) is a given superpotential that corresponds to the exactly solvable
potentialV (1)− (x). The example of such a superpotential is a shape invariant one [26]. As a
result of (9)V+(x) is also exactly solvable and thus forH+ we know in explicit form all energy
levels and the corresponding eigenfunctions. Then using SUSY transformations (4), (5) we
can easily calculate all excited energy levels and wavefunctions of its SUSY partnerH−, the
wavefunction of the ground state is given by (6). But to do this we must have the superpotential
W(x) which is expressed throughφ(x). BecauseW1(x) is a given function it is convenient to
represent the superpotentialW(x) using (18) and (19) in the following form

W(x) = W1(x) +
φ′′(x)
φ′(x)

. (36)

Similarly, the new exactly solvable potentialV−(x) can be written as follows

V−(x) = 1

2
(W 2

1 (x) +W ′1(x)) +

(
φ′′(x)
φ′(x)

)2

+ 2W1(x)
φ′′(x)
φ′(x)

− ε. (37)

In this expression the functionφ(x) is not an arbitrary one but must satisfy (19) for a given
W1(x). Thus we must solve equation (19) with respect toφ(x) for a givenW1(x) which can
be written in the following form

1
2φ
′′(x) +W1(x)φ

′(x) = εφ(x). (38)

In order to transform this equation into a Schrödinger-type equation let us writeφ(x) in
the form

φ(x) = f (x) exp

(
−
∫

dx W1(x)

)
. (39)

The new functionf (x) satisfies the equation which can be rewritten as follows

− 1
2f
′′(x) + V (1)+ (x)f (x) = −εf (x) (40)

where

V (1)+ (x) = 1
2(W

2
1 (x) +W ′1(x)). (41)
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As we see it is a Schrödinger-type equation of SUSY quantum mechanics but with negative
energy. The sign in the right-hand side of equation (40) can be changed using a duality
transformation called an anti-isospectral transformation [15]:

ξ = ix. (42)

Then equation (40) reads

−1

2

d2f̃ (ξ)

dξ2
+ Ṽ (1)− (ξ)f̃ (ξ) = εf̃ (ξ) (43)

where we have introduced the notations

f̃ (ξ) = f (−iξ) (44)

Ṽ
(1)
− (ξ) = −V (1)+ (−iξ) = 1

2

(
W̃ 2

1 (ξ)−
dW̃1 (ξ)

dξ

)
(45)

W̃1(ξ) = iW1(−iξ). (46)

In this paper we shall consider only such superpotentialsW1(x) for which the dual
superpotentialW̃1(ξ) is a real function ofξ . Then equation (43) is an ordinary Shrödinger
equation of SUSY quantum mechanics. Using (39) and (44) the solutions of equation (38) can
be expressed via the solutions of equation (43) in the following form

φ(x) = f̃ (ξ) exp

(∫
dξ W̃1(ξ)

)
= f̃ (ix)

f̃0(ix)
(47)

wheref̃ (ξ) is the solution of equation (43) for the energyε, f0(ξ) is the solution of the same
equation for the zero energyε = 0. Note, that to obtainφ(x) it is not necessary to use only
the square integrable solutions of equation (43). The solutions must be such thatφ(x) is a
monotonic function that has one node.

Thus, now we have the problem of solving equation (43). In order to solve this equation
the following fact is important. IfW1(x) is such that the corresponding SUSY partnersV

(1)
± (x)

belong to the class of shape invariant potentials thenW̃1(ξ) also gives the shape invariant SUSY
partnersṼ (1)± (ξ). To see this recall that the superpotential in the shape invariant case satisfies
the following equation [26]

W 2
1 (x, α) +

dW1 (x, α)

dx
= W 2

1 (x, α1)− dW1 (x, α1)

dx
+ 2R (48)

where the superpotentialW1(x) in the left- and right-hand sides of this equation have different
values of parametersα andα1, the remainderR does not depend onx. From this equation
using the definition (46) we obtain

W̃ 2
1 (ξ, α1) +

dW̃1 (ξ, α1)

dξ
= W̃ 2

1 (ξ, α)−
dW̃1 (ξ, α)

dξ
+ 2R. (49)

As we can seeW̃1(ξ) also satisfies the shape invariant equation. Note, that in comparison to
(48) the set of parametersα in equation (49) is replaced byα1 and vice versa.

Thus,W̃1(ξ) gives the shape invariant SUSY partnersṼ (1)± (ξ) and equation (43) can be
solved exactly. Using these solutions on the basis of (47) we getφ(x). Substitutingφ(x) into
(37) we obtain a new exactly solvable potentialV−(x) which is the lower SUSY partner of
the known exactly solvable potentialV+(x). Of course we must verify thatφ(x) satisfies the
above considered conditions, namely,φ(x) must be a monotonic function with one node.

In conclusion of this section let us consider some examples.
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4.1. Example 3

Let us put

W1(x) = x. (50)

Such a choice corresponds to the linear harmonic oscillator. The dual superpotential in this
case has the same form asW1(x)

W̃1(ξ) = ξ (51)

and thus equation (43) is the Shrödinger equation for the linear harmonic oscillator. Then,
using the well known wavefunctions of stationary states of linear harmonic oscillators on the
basis of (47), we obtainφ(x) = βH2k+1(ix) (β is some constant), which is exactly equal to
(22). Here eachk corresponds to the energyε = 2k + 1. Note, that in order to satisfy the
appropriate conditions forφ(x) we select only odd solutions of equation (43).

This example reproduces the result of the first example of section 3 in the special case
γ = 1.

4.2. Example 4

Let us consider a superpotentialW1(x) that corresponds to the Rosen–Morse oscillator. In this
case

W1(x) = α tanh(x) (52)

is shape invariant. The dual superpotential

W̃1(ξ) = α tan(ξ) (53)

is also shape invariant. The potential energy corresponding to (53) reads

Ṽ
(1)
− (ξ) = α(α − 1)

2 cos2(ξ)
− α

2

2
. (54)

As we see the dual potential energy has singularities at the points

ξn = π

2
+ πn n = 0,±1,±2, . . . . (55)

Traditionally, the Schr̈odinger equation (43) with potential energy (54) is considered on the
interval between two neighbouring singularities using zero boundary conditions for solutions
f̃ (ξ). Without any problem we consider the solutions of (43) on the fullξ -line which take
zero values in all points (55)

f̃ (ξn) = 0 n = 0,±1,±2, . . . . (56)

Such solutions can be easily obtained with the help of SUSY quantum mechanics. Using three
first odd solutions of (43) forφ(x) given by (47) we obtain

φ1(x) = sinh(x) for ε = ε1 (57)

φ3(x) = [1− α + (2 +α) cosh(2x)] sinhx for ε = ε3 (58)

φ5(x) = [6 + α + 3α2 − 4(α2 + 2α − 3) cosh(2x)

+(α2 + 7α + 12) cosh(4x)] sinhx for ε = ε5 (59)

where

εk = ((α + k)2 − α2)/2. (60)

Note that we may directly verify that functionsφ(x) given by (57)–(59) indeed satisfy
equation (38). Substituting the obtainedφk(x) andε = εk into (37) we get the set of exactly
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solvable potentialsV−(x, k) (here we explicitly write down the dependence of the potential on
k)

V−(x, k) = tanh2(x)

(
1

2
α(α − 1) +8k(x)(8k(x) + 2α)

)
− εk +

α

2
(61)

where

81(x) = 1

83(x) = 3(2 +α) cosh(2x) + α + 3

(2 +α) cosh(2x)− α − 1

85(x) = (3 +α)[5(4 +α) cosh(4x) + 4(5− α) cosh(2x)] + α(5− α) + 30

(3 +α)[(4 +α) cosh(4x)− 4(1 +α) cosh(2x)] + 3(1 +α)(2 +α)
.

The potentialV−(x, 1) reproduces the Rosen–Morse one. Other potentials are new exactly
solvable ones.

Note that fork = 3 the potential can be written in the following explicit form:

V−(x, 3) = − 4(3 + 2α)

((2 +α) cosh(2x)− 1− α)2 +
4(1 +α)

(2 +α) cosh(2x)− 1− α
− (1 +α)(2 +α)

2 cosh2 x
+
(3 +α)2

2
(62)

and was previously obtained by us in [24].
Note, thatε is the parameter of the superpotential and thus the parameter of the potentials

V±(x). As we seeV−(x) is exactly solvable whenε is equal to a certain fixed value. It is worth
stressing that for given functionsφ(x) (for example (58), (59)) and arbitraryε it is always
possible using the results of the previous section to construct QES potentials with two known
eigenstates. These QES potentials at certain fixed values ofε (60) become exactly solvable
(61) and can be treated as CES potentials.

5. Conclusions

We have developed a new SUSY method for constructing QES potentials for which we know in
explicit form the energy levels and wavefunctions of the ground and first excited states. From
the obtained general expressions for QES potential and wavefunctions of the ground and first
excited states the following interesting fact can be derived. The ratio of the wavefunctions of
the first excited state and ground state and the distance between corresponding energy levels
entirely determine the potential energy.

The method developed for constructing QES potentials with two known eigenstates is
extended for generating CES potentials which are exactly solvable at certain fixed values of
parameterε. Finally, this new exactly solvable potential is the lower SUSY partner to the
known exactly solvable potential. In this sense our method for generating CES potentials is
similar to the method proposed in [20, 21] although the realization is different. In addition,
our method gives the interesting relation between QES and CES potentials. Namely, when the
parameterε of QES potentials is equal to a certain fixed values then QES potentials become
exactly solvable and can be treated as CES ones.

Note, that an important moment in our approach for generating CES potentials is the duality
transformation which we use to transform equation (38) to a Schrödinger-type equation. In
this paper we only consider the superpotential for which the dual one (46) is a real function of
a new variable. The case of complex dual superpotentials is more complicated and we plan to
consider this case in future. It will provide a possibility to extend the class of CES potentials
which can be obtained by the method suggested in this paper.
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